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Stability of modulated-gravity-induced thermal convection in magnetic fields
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A stability analysis is presented of modulated-gravity-induced thermal convection in a heated fluid layer
subject to an applied magnetic field. The nearest correction to the critical Rayleigh number for both single and
multiple frequency oscillating-gravity components is obtained by solving the linearized magnetohydrodynamic
equations using the small parameter perturbation technique. The correction depends on both the applied
magnetic field and the oscillating frequency. In the absence of an applied magnetic field, the correction
depends on the Prandtl number only when the exciting frequency is small. However, it asymptotically ap-
proaches zero as the frequency increases, with or without the presence of a magnetic field. The heated fluid
layer is more stable with gravity modulation than with any type of wall temperature modulation. The difference
becomes smaller with decreasing Prandtl number Pr. This finding is of critical importance in that ground-based
experiments with appropriate wall temperature modulations may be conducted to simulate the oscillating-
gravity effects on the onset of thermal convection in lower-Prandtl-number fluids. For conducting melts
considered for microgravity applications, it is possible to apply an external magnetic field to further inhibit the
onset of modulated-gravity-induced thermal convection. This effectiveness increases with the Hartmann num-
ber Ha. For large Ha, the nearest correction termR02;Ha2 as the magnetic Prandtl number Pm!1. However,
R02;Ha4/3 for Ha@1 and Pm@1, provided that Ha,0.5p(Pm/Pr3/2), which is satisfied by a majority of space
melt experiments. Thus, under normal laboratory conditions applied magnetic fields are more effective in
stabilizing a conducting fluid subject to an oscillating-gravity field than one subject to a constant field. If Ha
.0.5p(Pm/Pr3/2), R02;2Ha2 for Ha@1 and Pm@1 and the magnetic field becomes less effective in stabi-
lizing thermal convection driven by oscillating gravity than that driven by the constant gravity. This is in
contrast with the existing studies on thermal convection stability in a magnetic field, which show that marginal
stability is independent of Pm and always increases with increasing applied field.

DOI: 10.1103/PhysRevE.63.041508 PACS number~s!: 64.70.Dv
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I. INTRODUCTION

Thermal convection induced by oscillating forces resu
ing from either oscillating wall temperatures or modulat
gravitational forces or a combination of the two has meri
attention in the fluids research community for some period
time. Gershuni and Zhukhovitskii@1,2# were among the early
investigators to study the instability of thermal convecti
driven by periodically varying parameters. In their analys
the Galerkin method was applied to reduce a first-order
ferential system to an ordinary differential equation with p
riodic coefficients, which were then solved for critical Ra
leigh numbers above which convection sets in. They stud
both the classical Be´rnard problem and convection in a cy
inder heated from its bottom. Linear analysis of Be´nard con-
vection was also studied by Venezian@3# for a small ampli-
tude modulation of boundary temperatures. Roppo, Da
and Rosenblat@4# studied the same problem with an oscilla
ing wall temperature condition but their investigations a
included weakly nonlinear stability analyses. For finite a
plitude analyses, the Galerkin method represents a us
technique, which was used by several authors@2,4–8#.
Wadih and Roux@9# also presented a study on the instabil
of the convection in an infinitely long cylinder with gravit
modulation oscillating along the vertical axis. These analy
have all established that the onset of convection is alte
under the modulation of constraints. Much recent attent
has been on the subharmonic and bifurcation phenomen
fluids under a modulated gravity field@10#. These studies no
1063-651X/2001/63~4!/041508~9!/$20.00 63 0415
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only are of fundamental value in providing physical insig
into the basic behavior of fluids induced by oscillating the
mal forces, but also have important implications for desig
ing thermal and fluid systems, e.g., crystal growth from me
in the low-gravity environment of orbiting space vehicl
or stations, where gravity changes in both direction a
time @9,11,12#.

Since molten metals and semiconductor melts are ele
cally conducting, a magnetic field may be applied to cont
the thermally induced convective flows in these fluids. Le
plausible than gravity, this approach originates from the
teraction of the liquid motion with an impressed magne
field. This interaction gives rise to a Lorentz force that o
poses the melt flow. This velocity reduction effect, call
magnetic damping, has now been widely used in the mat
als industry to obtain more homogeneous semiconduc
and metal crystals under terrestrial conditions@13#. Because
gravity and magnetic fields represent different mechanis
for flow reduction, they may be combined to further suppre
the convection in a modulated gravity field@14,15#. Indeed,
some research work has been carried out to investigate
possible effects of magnetic fields on oscillating flows. The
studies are based on the flow analyses of a conducting
in a parallel plate channel subject simultaneously to an
cillating gravity field and a magnetic field. As the chann
walls are assumed to be at different temperatures from
fluid and the gravity oscillates perpendicular to the tempe
ture gradient, thermal suction guarantees a time varying c
vective flow and the system is intrinsically unstable@15#.
©2001 The American Physical Society08-1
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B. Q. LI PHYSICAL REVIEW E 63 041508
This paper presents a stability analysis of a heated fl
layer subjected to both gravity modulation and an exter
magnetic field. Both the gravity and the magnetic field a
parallel to the temperature gradient. We intend to provid
fundamental understanding of how an applied magnetic fi
would influence natural convection arising from gravity pe
turbation. As a first attempt, we present a linear stabi
analysis of a heated fluid system to explore the effect
magnetic field on oscillating flows. In a subsequent pap
we will present a nonlinear aspect of the problem, which w
address the issues of subharmonic and bifurcation phen
ena. While the magnetic effect on the convection stability
well understood for fluid flow driven by earth gravity, the
seems to have been no work, to the best knowledge of
author, on the magnetic field effect on the stability of th
mally driven flows in a modulated-gravity-field environmen
Fundamental questions such as how the external field aff
the modulated-gravity-driven convection instability a
whether or not the understanding gained from studies on
magnetic field effect on constant-gravity-induced flows
pertinent, as well as practical questions such as whethe
not a ground-based experiment may be constructed to s
late the low-gravity~or g-jitter! effect remain basically unre
solved. We intend to answer these questions by solving
magnetohydrodynamic equations using the small param
perturbation technique, which will form a basis for the su
sequent nonlinear analysis.

II. STATEMENT OF THE PROBLEM

Referring to Fig. 1, let us consider a horizontal lay
heated from below, of thicknessl in a constant magnetic field
and in a modulated gravity environment. A temperature g
dient is established in the vertical direction withT2 at the
bottom andT1 at the top of the fluid layer. The magnet
field is applied perpendicular to the thickness of the fluid a
the time dependent gravity is assumed to oscillate along
vertical direction. It has the specific form of

g~ t !5mgg0~11« cosvt !1 f ~ t !,

whereg(t) is the gravity perturbation andg0 the earth grav-
ity constant.

The fluid is assumed to be incompressible and electric
conducting. The densityr of the fluid is assumed to follow
the Bounssinesq approximation, that is,

r5r0@12b~T2Tr !#,

whereb is the thermal expansion coefficient andr0 the den-
sity at the reference temperatureTr . Other thermal and

FIG. 1. Schematic of a heated fluid layer subject to the co
bined action of gravity modulation and an applied magnetic fie
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physical properties such as thermal conductivity, electri
conductivity, and viscosity are considered constant. For s
plicity, free-free boundary conditions will be prescribed
the top and bottom. These conditions are such that the
mal velocities are zero and the tangential stresses are ze
both the top and bottom surfaces. Also, the viscous diss
tion is neglected@16#. A dc magnetic field is impressed o
the system, and in the present case only the magnetic fie
the vertical direction is considered. The objective of th
work is to make an assessment of critical conditions for
onset of natural convection with gravity modulation in th
presence of an applied dc magnetic field.

III. GOVERNING EQUATIONS

The nondimensionalized form of the magnetohydrod
namic equations describing the fluid flow and heat trans
phenomena in a heated fluid layer subject to both gravity
an applied magnetic field is given by Chandrasekhar@16# and
reads

]v

]t
1v•“v52“P1Ra~ t !PrTk1Pr¹2v

1Ha2Pm Pr“3H3H, ~1!

“•v50, ~2!

]T

]t
1v•“T5¹2T, ~3!

]H

]t
5“3~v3H!1Pm¹2H, ~4!

“•H50, ~5!

wherev is the velocity,P the pressure,T the temperature,H
the intensity of the magnetic field, andt the time, nondimen-
sionalized by reference parametersk/ l , r0k2/ l 2, T22T1 ,
H0 , andl /k, respectively. Also in the above equations, Pr
the Prandtl number, Ra the Rayleigh number, Ha the H
mann number, and Pm/Pr the magnetic Prandtl num
These parameters are defined as follows:

Pr[
n

k
, Ra~ t ![

bg~ t !~T22T1!l 3

kn
,

Ha2[
sm2H0

2l 2

r0n
, Pm[

1

smk
,

wheren, k, b, s, andm are the thermophysical properties
the fluid, i.e., the kinematic viscosity, the thermal diffusivit
the volume expansion coefficient, the electrical conductiv
and the magnetic permeability.

The Rayleigh number is a function of time and can
written as

Ra~ t !5R~11« cosvt !, ~6!

-
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STABILITY OF MODULATED-GRAVITY-INDUCED . . . PHYSICAL REVIEW E 63 041508
whereR is evaluated usingmgg0 . For the free-free surface
boundaries under present consideration, we have the fol
ing simplified boundary conditions:

T51,
]u

]z
5

]v
]z

5w50 on z50 ~7!

on the lower plane and

T50,
]u

]z
5

]v
]z

5w50 on z51 ~8!

on the upper plane.
In the basic state, the fluid is at rest and thermal cond

tion prevails. The hydromagnetostatic solutions are as
lows:

T0~z,t !512z, u050, P0~z,t !, H05k.

The governing equations for the stability analysis may
derived by considering a small perturbation to the cond
tion state of the system stated above,

v5u01u, P5P01p, T5T01u, H5H01h,

whereu, p, u, andh are the disturbances of velocity, pre
sure, temperature, and magnetic field.

With these, and taking“3“3 in Eq. ~1! to remove the
gradient term, one has the equations for the perturbed
variables,

¹2S 1

Pr

]

]t
2¹2Du5Ra~ t !S 2

]

]z
“u1¹2ukD

1Ha2Pm
]

]z
¹2h, ~9!

S ]

]t
2¹2D u5W, ~10!

S 1

Pm

]

]t
2¹2Dh5

1

Pm

]u

]z
, ~11!

where use has been used of“3“3h52¹2h, “3“3v
52¹2v, “•u50, and“•h50, and also the nonlinear term
have been neglected.

The boundary condition for the perturbed velocity is t
same as stated in Eqs.~7! and~8!. For the perturbed tempera
ture u, it is zero at both the top and bottom as the tempe
ture is considered prescribed at these boundaries. The bo
ary conditions required for the magnetic field for the proble
under consideration are such that the field is continu
across the interface between the vacuum and the fluid
that the induced current cannot flow out of the fluid layer,
specifically, the normal component of the induced curr
density is zero.

The above linearized equations, along with the bound
conditions, constitute the governing equations for the sta
ity of thermal convection in a magnetic field with gravi
modulation. Stability analyses may now be made based
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the solution of these equations using the small param
perturbation method together with Floquet theory@17#.

IV. MATHEMATICAL ANALYSIS

In line with the linear stability theory, we analyze the fie
disturbances in terms of an arbitrary set of normal modes
examine the stability of these modes. Following the pro
dures given by Chandrasekhar@16#, we need only examine
the behavior of the vertical component of the velocity fie
the temperature field, and the vertical component of the m
netic field. The horizontal components of the velocity a
magnetic fields, when needed, may be derived from th
solutions. Thus, we can consider the perturbations of th
vertical components and the temperature field as tw
dimensional waves that take the forms

W5w~z,t !exp@ i ~axx1ay!#,

u5Q~z,t !exp@ i ~axx1ayy!#,

hz5H~z,t !exp@ i ~axx1ayy!#,

whereW5k•u andhz5k•h. With these, Eqs.~9!–~11! may
be further simplified, with the result

~D22a2!S D22a22
1

Pr

]

]t Dw1Ha2PmD~D22a2!H

5Ra~ t !a2Q, ~12!

]Q

]t
5~D22a2!Q1w, ~13!

]H
]t

5Pm~D22a2!H1Dw, ~14!

whereD5]/]z anda25ax
21ay

2.
The stability analyses require one to seek the solution

eigenfunctions (w,Q,H) and eigenvalues of Ra associat
with the above equations for a modulated gravity field tha
different from the constant gravity field by a small quant
of order«. These functions and Ra should be a function o«
and they should be obtained for a given magnetic field or
and a frequencyv. Since« is small for the problem unde
consideration, we may seek to expand these eigenfunct
and eigenvalues in a series of« in accordance with the theor
of small parameter perturbation@17#,

Ra~ t !5R~11« cosvt !5~R001«R011«2R021¯ !

3~11« cosvt !, ~15!

w5w101«w111«2w121¯ , ~16!

Q5Q101«Q111«2Q121¯ , ~17!

H5H101«H111«2H121¯ . ~18!

The above equations are substituted into Eqs.~12!–~14!
and the resulting equations are further cross differentiate
8-3
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B. Q. LI PHYSICAL REVIEW E 63 041508
eliminateH. Upon collecting the terms of the same powe
of «, one obtains the set of differential equations

L~w10!50,

]Q10

]t
5~D22k2!Q101w10, ~19!

L~w11!52R01a
2S 1

Pm

]

]t
2~D22a2! Dw102R00a

2

3S ]

]t
2~D22a2! D S 1

Pm

]

]t
2~D22a2! D

3Re$e2 ivt%Q10,

]Q11

]t
5~D22a2!Q111w11, ~20!

L~w12!52R02a
2S 1

Pm

]

]t
2~D22a2! Dw102R01a

2

3S 1

Pm

]

]t
2~D22a2! Dw112R01a

2

3S ]

]t
2~D22a2! D S 1

Pm

]

]t
2~D22a2! D

3Re$e2 ivt%Q102R00a
2S ]

]t
2~D22a2! D

3S 1

Pm

]

]t
2~D22a2! DRe$e2 ivt%Q11,

]Q12

]t
5~D22a2!Q121w12, ~21!

where Re means the real value of the quantity in the cu
brackets andL is the differential operator defined by

L[~D22a2!S ]

]t
2~D22a2! D F S 1

Pr

]

]t
2~D22a2! D S 1

Pm

]

]t

2~D22a2! D2Ha2D2G1R00a
2S 1

Pm

]

]t
2~D22a2! D .

~22!

The above equations forw1i andH1i ( i 50,1,2) are required
to satisfy the boundary conditions given by Eqs.~7! and~8!,
which may be more specifically stated as follows@16#:

w1i5D2w1i5D4w1i50 and Q1i50 at z50,1,

i 50,1,2. ~23!

Equation~19! together with the relevant boundary cond
tions expressed by Eq.~23! corresponds to the case with«
50 and describes the standard Be´nard convection in a mag
netic field. Marginally stable solutions of the eigenfuncti
of w00 and eigenvalueR00 for that problem have been ob
04150
ly

tained by Chandrasekhar@16#. For a fixed value of wave
vectora, the eigenfunction is given by

w005sinpz, ~24!

and the corresponding eigenvalue ofR00 is computed by

R005
p21a2

a2 @~p21a2!21p2Ha2#. ~25!

Note that with Ha50 or in the absence of a magnetic fie
the above expression reduces to that for a standard Be´nard
problem.

To carry out the calculations for higher orders of«, we
need to calculate the perturbed temperature field for the c
of «50. The solution is obtained by simply substitutingw00
back into Eq.~19! and solving the resulting equation with th
boundary conditions forQ00 as stated in Eq.~23!, viz.,

Q005
sin~pz!

p21a2 . ~26!

With the eigenfunctionsw00 andQ00 substituted into the
equation forw11, one has an ordinary differential equatio
with time periodic coefficients. The mathematical propert
and solvability conditions of these types of equation ha
been extensively studied by Yakubovich & Starzhinskii@17#
and by Mishchenko and Rozov@18#. For the equation to have
a solution, the theory states that the right hand side of
~20! for w11 must be orthogonal to the null space of th
operatorL. This requires that the time independent~or steady
state! part of the right hand side of the equation be orthog
nal to its steady state solution or sinpz, whence by Eq.~20!
R01 is zero,

R015
^sinpzF~ t !,sinpz&

^sinpz,sinpz&
50, ~27!

where the overbar denotes the time average over one cyc
oscillation. The functionF(t), which is the time dependen
part of Eq.~20!, is zero as it involves the time averaging
cosvt or sinvt. Also, the following definition has been use
for the inner product:

^a~z!,b~z!&5E
0

1

a~z!•b~z!dz. ~28!

By the same token, one can show that all the odd orders oR,
that is,R01,R03,R05,..., arealso zero because a change
the sign of« shifts the time origin by a half period but doe
not change the physical problem@3#. Thus for this type of
problem only an even order correction toR exists and the
lowest order of correction isR02.

To calculateR02, we need expressions forw11 andQ11.
Equation~20! may be solved forw11 and Q11 by inverting
the operatorL. Inspection of the equation suggests thatw11
andQ11 should take the form of

w115Re$Ae2 ivt%sinpz and Q115Re$Be2 ivt%sinpz.
~29!
8-4
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Thus, the following relation may be obtained:

L~e2 ivt sinpz!5L~v!e2 ivt sinpz, ~30!

whereL(v) is defined by

L~v!5
~Pm1Pr11!v2~p21a2!2

Pm Pr

1 iv~p21a2!@~11Pr21!~p21a2!2

1~12Pm21!p2Ha22v2Pr21Pm21#. ~31!

Substituting Eqs.~30! and ~31! back into Eq.~20! and rear-
ranging the final results, one has the solution for the eig
functionsw11 andQ11 as follows:

w115R00

a2

p21a2

3ReH ~2 iv1p21a2!@ iv Pm212~p21a2!#

L~v!
e2 ivtJ

3sinpz, ~32!
n

th
id
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f
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04150
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Q115R00

a2

p21a2 ReH iv Pm212~p21a2!

L~v!
e2 ivtJ sinpz.

~33!

These results may be used along with Eq.~22! to deter-
mineR02, the lowest-order correction toR. Thus we have for
w12

L~w12!52a2R02~p21a2!sinpz2a2R00S ]

]t
2~D22a2! D

3S 1

Pm

]

]t
2~D22a2! DRe$e2 ivt%Q11. ~34!

By the solvability condition for Eq.~34!, the steady part
of its right-hand side needs to be made orthogonal to sinpz,
or the steady state solution, whence we have the result fo
eigenvalue ofR02:
R0252
2R00

~p21a2!K S ]

]t
2~D22a2! D S 1

Pm

]

]t
2~D22a2! DRe$e2 ivt%Q11,sinpzL . ~35!
-
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Carrying out the appropriate temporal and spatial operatio
one has the final solution forR02,

R025
R00

2 a2

2 S ReH ~p21a2!Pm2 iv

PmL~v! J D . ~36!

We can now determine the smallest wave number of
disturbance that will amplify thermal convection in the flu
layer when the Rayleigh number reaches a threshold va
From Eqs.~25! and ~36!, the wave number is a function o
the applied magnetic field. The minimum value of wa
number at which the critical Rayleigh number exists can
derived by taking the derivative ofR and setting it to zero,

]R/]ac5]R00/]ac1«2]R02/]ac1¯50. ~37!

In addition, the wave number can also be expanded in p
ers of«, or

ac5a01«a11«2a21¯ . ~38!

With these, one can show that to the leading orderac is
calculated by

]R00

]ac
50, ~39!

which gives the following equation for determining the cri
cal wave numberac :
s,

e

e.

e

-

2ac
613p2ac

45p61p4Ha2. ~40!

This is the same as that for unmodulated Be´nard convection
in a magnetic field@16#. Thus, to the order of«2, the critical
Rayleigh number is calculated by evaluatingR00 andR02 at
a5ac . In his studies on Be´nard convection with a modu
lated temperature gradient, Venezian@3# showed thata1 is
zero anda2 needs to be considered only when a higher-or
approximation, sayR04, is evaluated. It is straightforward t
show that this conclusion applies to the present problem
well. In passing, we note that with the absence of an app
magnetic field, Eq.~40! givesac

25p2/2, the same as for the
pure Bénard problem, as expected. However, unlike in t
pure Bénard problem for whichac is a constant,ac becomes
dependent on the magnetic field applied when present
fact, ac→p2/3Ha1/3/21/6 and R00→p2Ha2 when Ha→`,
which implies that, as the applied magnetic field increas
the wavelength of the plane disturbances~i.e., 2p l /ac! at
marginal stability becomes increasingly smaller and so d
the size of the cellular structure.

V. LIMITING BEHAVIOR OF R02 ÕR00

Before embarking upon a discussion of the results, let
examine some of the limiting behavior of the solutions.
that regard, we are particularly interested in the ra
R02/R00. From the solutions forR00 andR02, the ratio de-
pends on the exciting frequency and amplitudes, the m
8-5
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B. Q. LI PHYSICAL REVIEW E 63 041508
netic field, and the thermophysical properties of the fluid

A. The case when Ha\0

This case corresponds to Be´nard convection driven by an
oscillating gravity field without the presence of a magne
field. Gresho and Sani@5# studied the stability problem of a
fluid layer with gravity modulation using the Gerlaki
method and Hill’s theory. Our present solutions may be u
to make an assessment of the problem of a qualitative na
This can be done by setting the Hartmann number to zer
Eqs.~25! and ~35!, which gives the result

R02

R00
5

~p21a2!2Pr

2@~p21a2!2~Pr11!21v2#
. ~41!

This equation suggests thatR02 is always positive and the
fluid becomes more stable with a modulated gravity fi
than with an unmodulated one. The stability of the fluid lay
depends on the Prandtl number of the liquid, the excitat
frequency, and the other parameters associated withR00.
The maximum stabilizing effect occurs atv50. This con-
clusion is consistent with Venezian’s result@3# on thermal
convection with an oscillating wall boundary condition. F
both the present case and Venezian’s problem,R02/R00 ap-
proaches an asymptotic value@i.e., 0.5 Pr/(11Pr)2# at a rate
of v2 asv→0 when the wall temperatures are oscillated o
of phase, while the stabilizing effect diminishes to zero a
rate ofv22 asv→`. This behavior is also consistent wit
the analyses of Wadih and Roux@9#, who studied therma
convection in an infinitely long cylinder with gravity modu
lation along the axis of the cylinder. In fact, with theirR00

c

substituted for (p21a2)2, the above equation becomes ide
tical to the expression for the ratio ofR02/R00 for an infi-
nitely long cylinder with a vertical gravity modulation@see
Eq. ~8.11! in @9##. Equation~41!, together with the results
obtained by other investigators@3,6,9#, seems to suggest tha
the near order correction to the critical Rayleigh number
constant at v50, and the constant is given byR02
527p4/8 Pr(11Pr21)2, which is a function of Prandtl num
ber and is independent of the type of geometry and
mechanism of periodic excitation~whether bottom wall tem-
perature or antisymmetric wall temperature or gravity mo
lation!. An exception to this is when both the top and botto
wall temperatures are modulated in phase, for which c
R0250 at v50 ~see also casea in Fig. 3 below!.

B. The case when Pm\0 or Pm\`

The parameter Pm is a measure of the ratio of diffusion
magnetic field over diffusion of heat in a medium. For m
terials that transport heat much faster than magnetic fi
Pm→0 and thus we have the relationship,

R02

R00
→ ~v21Ha2p2Pr!@~p21a2!21Ha2p2#Pr

2@v2~p21a2!2~Pr11!21~v21Ha2p2Pr!#2

as Pm→0.
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It is remarked that the above result should apply to
monotonic stability branch as overstability may occur wh
Pm→0 or 1/sm!k @18#.

On the other hand, for materials in which the magne
field diffuses much faster than heat, Pm→` or 1/sm@k
~most metal and semiconductor melts fall into this categ
and have a value of Pm;13103 or Pm/Pr;13105!, the
following relationship is obtained:

R02

R00
→ ~p21a2!2@~p21a2!21Ha2p2#Pr

2$v2~p21a2!21@~p21a2!2~Pr11!1Ha2p2#2%

as Pm→`.

For both cases,R02 is always positive and thus an applie
magnetic field increases the critical Rayleigh numb
thereby inhibiting thermal convection. Indeed, becauseR02 is
positive, an applied magnetic field becomes even more ef
tive in damping out disturbance in a fluid subjective to
modulated gravity field than one subject to a constant gra
field. Both relations reduce to Eq.~41! when Ha→0, as is
expected. For a fixed magnetic field, the effect of the f
quency on the stability of the fluid layer differs for the tw
cases. The difference, however, diminishes asv increases. In
fact, both relations show thatR02/R00;v22 asv→` for a
fixed Ha. However, the stability behavior with an increase
the applied magnetic field differs for these two limiting sit
ations. In the case of Pm→0, the ratioR02/R00 approaches a
constant as Ha→`, suggesting that for these types of mat
rial R02 increases at a rate of Ha2, i.e., the same asR00. For
the case of Pm→`, on the other hand,R02/R00;Ha22/3, or
R02 increases at rate of Ha4/3, as Ha→`. This is in sharp
contrast with the conclusion drawn from a stability study
fluid subject to a constant gravity in a magnetic field, whi
states that marginal stability is independent of the param
Pm @16#.

It should be remarked here that the above discussion
the case of Pm→` is conditional on Ha/Pm@1. However,
detailed analysis shows that the conclusion holds true so
as Ha,0.5~Pm/Pr!3/2. Thus, for typical electrically conduct
ing melt experiments under consideration for space appl
tions, Ha is in general less than 1000 while 0.5p~Pm/Pr!3/2

;53107. Clearly the condition is well satisfied.
The analyses further show that, if Ha.0.5p~Pm/Pr!3/2,

R02;2Ha2 as (Ha,Pm)→` and thus an applied magnet
field becomes less effective in stabilizing the fluid in
modulated than in a constant gravity field. Moreover,R02;
2Ha2/~Pm21) as Ha→` for a finite value of Pm~Þ1!.

VI. RESULTS AND DISCUSSION

Some numerical results are provided below to further
lustrate the onset of thermal convection with oscillati
gravity and the effects of applied magnetic fields. Figure
plots the results forR02/R00 againstv for free convection by
oscillating gravity forces without an applied magnetic fie
along with the results by Venezian@3# for convection by wall
temperatures modulated out of phase@see Eq.~45! in his
paper# for four values of Pr, namely, Pr50.01, 0.1, 1, and 10
8-6
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It is apparent that the results for the two different modu
tions match exactly at the limitv50 for all values of Pr, as
expected. With an increase inv, the ratio ofR02/R00 de-
creases for both gravity and wall temperature modulatio
However,R02/R00 decreases much faster with wall tempe
ture modulation than with gravity modulation for the enti
range of Pr. The same behavior was also reported by Wa
and Roux @9# for an infinitely long cylinder with gravity
modulation along the axis of symmetry.

Inspection of Fig. 2 also indicates that as Pr decreases
difference for the onset of convection between the wall te
perature modulation and gravity modulation becom
smaller. In particular, at Pr50.01, the two curves for differ-
ent modulations almost overlap. To better resolve the dif
ence, the present results are plotted in Fig. 3 along with th
obtained for three different wall temperature oscillati
mechanisms, where casesa and b correspond to symmetric
and antisymmetric wall temperature modulations, resp
tively, and casec is for the bottom wall temperature modu
lation only. Clearly, casea is much different; but casesb and
c are very closely correlated to the present results, wit
maximum difference of,2% for a frequency of less than 10
Perhaps one of the important implications of these result
that a ground-based experimental system that employs
temperature modulations, either symmetric or antisymme
may be designed to simulate reasonably well the effect
gravity modulations, for the purpose of studying the on
of thermal convection of a heated fluid layer with the
modulations.

The magnetic field effects on the thermal convection
depicted in Fig. 4 for liquids with Pr50.01, which covers
most electrically conducting fluids. For a majority of micr
gravity experiment systems considered for metal and se
conductor melts, the Hartmann number is in the range o

FIG. 2. Comparison ofR02/R00 for gravity modulation and wall
temperature modulation in the absence of an external magn
field.
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to 100 and a Hartmann number of 1000 is considered
upper limit. For example, for a Ga-doped germanium sin
crystal growth system of 1 cm in dimension, Ha51000
would correspond to a magnetic field of 2.2 T@15#. The
results in Fig. 4 clearly indicate that an applied magne
field helps to stabilize the thermal convection subject
gravity modulations. In fact, the fluid becomes more sta
as the magnetic field strength~or the Hartmann number Ha!
increases. This behavior is further exhibited in Fig. 5, wh
R02/R00 is plotted against Ha withv as an additional
parameter.

tic

FIG. 3. Comparison ofR02/R00 for gravity modulation and three
different wall temperature modulations for Pr50.01 without an ap-
plied magnetic field.

FIG. 4. Dependency ofR02/R00 on frequency ofg-jitter modu-
lation in the presence of an applied magnetic field for Pr50.01.
8-7



is
re
s

vit
a
s

or a
s of
s.

o-
ar
ncy
as

e

ut-

ency
r to

l to

by
Eq.

Eq.
ent

-

d

B. Q. LI PHYSICAL REVIEW E 63 041508
VII. EXTENSION TO MULTIFREQUENCY MODULATION

In space vehicles, gravity in tandem with microgravity
random and is caused by various sources including c
movement and on-board machine operations. In many ca
a single component is not sufficient to present the gra
perturbation and theseg-jitter data may be represented by
synthesized Fourier series, each term of which involve
time harmonic function with a distinct frequency,

g~ t !5m0g0S 11 (
m51

M

«m cosvmt D 5m0g0~11ET cosvt !,

~42!

whereE and cosvt are two vectors,

E5$«1 ,«2 ,«3 ,...%T and cosvt

5$cosv1t,cosv2t,cosv3t,...%T. ~43!

FIG. 5. Dependency ofR02/R00 on the strength of an applie
magnetic field for Pr50.01.
a

04150
w
es,
y

a

The linear analyses presented in the previous sections f
single component can be adapted to study these type
multifrequency component modulation. In particular, Eq
~19!–~23! will be used to describe each individual comp
nent with distinct frequency and amplitude. Now, simil
procedures may be extended to solve for multiple freque
g-jitter problems. Following the same line of argument
stated before,R andW are expanded in terms ofE,

R5R01ET
•R011E2T

•R021¯ , ~44!

W5W01ET
•W011E2T

•W021¯ , ~45!

whereE2, R01, W01, R02, andW02 are also vectors and ar
defined by

E25$«1«1 ,«1«2 ,«1«3 ,...,« i« j ,...%T,

R015$R01
1 ,R01

2 ,R01
3 ,...%T,

W015$W01
1 ,W01

2 ,W01
3 ,...%T,

R025$R02
11,R02

12,R02
13,...,R02

i j ,...%T,

W025$W02
11,W02

12,W02
13,...,W02

i j ,...%T.

Q andH can be expanded in a similar fashion. Substit
ing these relations into Eqs.~12!–~14! and separating the
same order terms as was done before for the single frequ
case, we have a system of differential equations, simila
Eqs.~19!–~23!, for the expanded variables.

This set of equations can be solved in a fashion paralle
the system defined by Eqs.~19!–~23!. In particular, we note
thatR02, and similarly other odd term corrections, vanish
the same reasoning based on the solvability condition for
~20!. Thus, the first-order functions such asW1 can be de-
termined and should have expressions similar to those in
~29!. With these results and also the solvability requirem
that the steady part of the right hand side of Eq.~42! be
orthogonal toW0 ,R02 can be determined. Writing the solu
tion in component form, we have forR02

mn ,
R02
mn52

R00

~p21a2! K S ]

]t
2~D22a2! D S 1

Pm

]

]t
2~D22a2! DR$e2 ivmt%Q11

n ,sinpL , ~46!
le
where

Q11
n 5R00

a2

p21a2 ReH ivnPm212~p21a2!

L~vn!
e2 ivntJ sinpz.

~47!

In particular ifvn5nv1 wheren is an integer andv1 is the
reference frequency, the cross product terms disappear
we have a simplified equation forR02

mn ,

nd

R02
mn5H R00

2 a2

2
ReH ~p21a2!Pm2 ivn

PmL~vn! J for m5n

0 for mÞn,
~48!

which obviously is very similar to that obtained for a sing
frequencyg-jitter component.
8-8
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VIII. CONCLUDING REMARKS

This paper has presented a stability study of modula
gravity-induced thermal convection subject to an appl
magnetic field. The analysis is based on solution of the
earized magnetohydrodynamic equations using the smal
rameter perturbation technique. The nearest correction to
critical Rayleigh number above which thermal convecti
sets in was obtained for both single and multiple freque
modulations. The nearest correction termR02 is found to be a
function of both applied magnetic field and gravity modu
tion frequency. The term asymptotically approaches a c
stant at a rate ofv2 for v!1, while it goes to zero at a rat
of v22 for v@1. This holds true with or without the pres
ence of a magnetic field. The heated fluid layer is m
stable with gravity modulation than with wall temperatu
modulations. The difference, however, becomes smaller w
decreasing Prandtl number. For metals and semicondu
melts (Pr50.01), the difference becomes reasonably sm
so that the modulated gravity effects on flow instability m
be simulated with appropriately designed wall temperat
modulations. For conducting melts, modulated-gravi
h.

ns
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induced thermal convection can be suppressed by appl
an external magnetic field. In fact, the magnetic field is m
effective in stabilizing fluids subject to a modulated grav
field than fluids subject to a constant one. The correct
termR02 increases at a rate of Ha2 for Pm!1, but at a rate of
Ha4/3 for Pm@1 in fluids in a modulated gravity field if Ha
,0.5p~Pm/Pr!3/2, which is satisfied by most space melt e
periments under consideration. For the case of
.0.5p~Pm/Pr!3/2, R02 decreasesat a rate of Ha2 for Pm
@1, indicating that an increase in applied magnetic fie
strength may destabilize the fluids when subjected to an
cillating gravity. This is in sharp contrast with our existin
knowledge that the marginal stability of a magnetic fie
acting on fluids subjected to constant gravity always
creases with Ha2 but is independent of Pm.
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