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Stability of modulated-gravity-induced thermal convection in magnetic fields
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A stability analysis is presented of modulated-gravity-induced thermal convection in a heated fluid layer
subject to an applied magnetic field. The nearest correction to the critical Rayleigh number for both single and
multiple frequency oscillating-gravity components is obtained by solving the linearized magnetohydrodynamic
equations using the small parameter perturbation technique. The correction depends on both the applied
magnetic field and the oscillating frequency. In the absence of an applied magnetic field, the correction
depends on the Prandtl number only when the exciting frequency is small. However, it asymptotically ap-
proaches zero as the frequency increases, with or without the presence of a magnetic field. The heated fluid
layer is more stable with gravity modulation than with any type of wall temperature modulation. The difference
becomes smaller with decreasing Prandtl number Pr. This finding is of critical importance in that ground-based
experiments with appropriate wall temperature modulations may be conducted to simulate the oscillating-
gravity effects on the onset of thermal convection in lower-Prandtl-number fluids. For conducting melts
considered for microgravity applications, it is possible to apply an external magnetic field to further inhibit the
onset of modulated-gravity-induced thermal convection. This effectiveness increases with the Hartmann num-
ber Ha. For large Ha, the nearest correction t&g~ Ha? as the magnetic Prandtl number Rrh. However,

Rox~ Ha*® for Ha>1 and Pre-1, provided that Ha 0.57(Pm/PP'?), which is satisfied by a majority of space

melt experiments. Thus, under normal laboratory conditions applied magnetic fields are more effective in
stabilizing a conducting fluid subject to an oscillating-gravity field than one subject to a constant field. If Ha
>0.57(Pm/PF?), Ry~ —Ha? for Ha>1 and Pra=1 and the magnetic field becomes less effective in stabi-
lizing thermal convection driven by oscillating gravity than that driven by the constant gravity. This is in
contrast with the existing studies on thermal convection stability in a magnetic field, which show that marginal
stability is independent of Pm and always increases with increasing applied field.
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[. INTRODUCTION only are of fundamental value in providing physical insight
into the basic behavior of fluids induced by oscillating ther-

Thermal convection induced by oscillating forces result-mal forces, but also have important implications for design-
ing from either oscillating wall temperatures or modulateding thermal and fluid systems, e.g., crystal growth from melts
gravitational forces or a combination of the two has meritedn the low-gravity environment of orbiting space vehicles
attention in the fluids research community for some period obr stations, where gravity changes in both direction and
time. Gershuni and ZhukhovitsKil,2] were among the early time[9,11,13.
investigators to study the instability of thermal convection Since molten metals and semiconductor melts are electri-
driven by periodically varying parameters. In their analysesgcally conducting, a magnetic field may be applied to control
the Galerkin method was applied to reduce a first-order difthe thermally induced convective flows in these fluids. Less
ferential system to an ordinary differential equation with pe-plausible than gravity, this approach originates from the in-
riodic coefficients, which were then solved for critical Ray- teraction of the liquid motion with an impressed magnetic
leigh numbers above which convection sets in. They studiefield. This interaction gives rise to a Lorentz force that op-
both the classical Baeard problem and convection in a cyl- poses the melt flow. This velocity reduction effect, called
inder heated from its bottom. Linear analysis ohBed con- magnetic damping, has now been widely used in the materi-
vection was also studied by Venezigd] for a small ampli- als industry to obtain more homogeneous semiconductors
tude modulation of boundary temperatures. Roppo, Davisand metal crystals under terrestrial conditi¢f©8]. Because
and Rosenbldi4] studied the same problem with an oscillat- gravity and magnetic fields represent different mechanisms
ing wall temperature condition but their investigations alsofor flow reduction, they may be combined to further suppress
included weakly nonlinear stability analyses. For finite am-the convection in a modulated gravity figlii4,15. Indeed,
plitude analyses, the Galerkin method represents a usefgsbme research work has been carried out to investigate the
technique, which was used by several authf2s4-§. possible effects of magnetic fields on oscillating flows. These
Wadih and Roux9] also presented a study on the instability studies are based on the flow analyses of a conducting fluid
of the convection in an infinitely long cylinder with gravity in a parallel plate channel subject simultaneously to an os-
modulation oscillating along the vertical axis. These analysesillating gravity field and a magnetic field. As the channel
have all established that the onset of convection is alteredalls are assumed to be at different temperatures from the
under the modulation of constraints. Much recent attentiorfluid and the gravity oscillates perpendicular to the tempera-
has been on the subharmonic and bifurcation phenomena tare gradient, thermal suction guarantees a time varying con-
fluids under a modulated gravity fie]d0]. These studies not vective flow and the system is intrinsically unstaplé.
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physical properties such as thermal conductivity, electrical
— conductivity, and viscosity are considered constant. For sim-
A

/‘,-‘
| 20 aui : licity, free-free boundary conditions will be prescribed at
X

WA A the top and bottom. These conditions are such that the nor-
T2 H mal velocities are zero and the tangential stresses are zero at
both the top and bottom surfaces. Also, the viscous dissipa-
FIG. 1. Schematic of a heated fluid layer subject to the com+ion is neglected16]. A dc magnetic field is impressed on
bined action of gravity modulation and an applied magnetic field. the system, and in the present case only the magnetic field in
the vertical direction is considered. The objective of this
This paper presents a stability analysis of a heated fluigvork is to make an assessment of critical conditions for the
layer subjected to both gravity modulation and an externabnset of natural convection with gravity modulation in the
magnetic field. Both the gravity and the magnetic field arepresence of an applied dc magnetic field.
parallel to the temperature gradient. We intend to provide a
fundamental understanding of how an applied magnetic field Il. GOVERNING EQUATIONS
would influence natural convection arising from gravity per-
turbation. As a first attempt, we present a linear stability The nondimensionalized form of the magnetohydrody-
analysis of a heated fluid system to explore the effect ohamic equations describing the fluid flow and heat transfer
magnetic field on oscillating flows. In a subsequent paperphenomena in a heated fluid layer subject to both gravity and
we will present a nonlinear aspect of the problem, which willan applied magnetic field is given by Chandraseki&f and
address the issues of subharmonic and bifurcation phenonteads
ena. While the magnetic effect on the convection stability is
well understood for fluid flow driven by earth gravity, there

ov
— +v-Vv=—VP+Rat)PrTk+Prv3v

seems to have been no work, to the best knowledge of the ot

author, on the magnetic field effect on the stability of ther-

mally driven flows in a modulated-gravity-field environment. +Ha?Pm PV X HXH, ()
Fundamental questions such as how the external field affects

the modulated-gravity-driven convection instability and V.v=0, ()

whether or not the understanding gained from studies on the

magnetic field effect on constant-gravity-induced flows is aT )

pertinent, as well as practical questions such as whether or EJFV'VT:V T, ©)
not a ground-based experiment may be constructed to simu-

late the low-gravity(or g-jitter) effect remain basically unre- H

solved. We intend to answer these questions by solving the —=VX(vXH)+PmV?H, (4)
magnetohydrodynamic equations using the small parameter at

perturbation technique, which will form a basis for the sub-

sequent nonlinear analysis. V-H=0, 5

wherev is the velocity,P the pressurel the temperaturesl

the intensity of the magnetic field, amdhe time, nondimen-
Referring to Fig. 1, let us consider a horizontal layer,sionalized by reference parametetsl, pox?/I?, T,—Ty,

heated from below, of thickne$sn a constant magnetic field Ho, andl/«, respectively. Also in the above equations, Pr is

and in a modulated gravity environment. A temperature grathe Prandtl number, Ra the Rayleigh number, Ha the Hart-

dient is established in the vertical direction wily at the ~mann number, and Pm/Pr the magnetic Prandtl number.

bottom andT; at the top of the fluid layer. The magnetic These parameters are defined as follows:

field is applied perpendicular to the thickness of the fluid and

Il. STATEMENT OF THE PROBLEM

the time dependent gravity is assumed to oscillate along the — R(t)= BI()(T,—Ty)I°
vertical direction. It has the specific form of K’ N KV '
g(t)=uggo(1+e coswt)+f(1), a,quélz 1
, _ , He=——, Pm=—0,
whereg(t) is the gravity perturbation ang, the earth grav- poV OpK

ity constant. _ .
The fluid is assumed to be incompressible and electricallyvherev, «, 8, o, andu are the thermophysical properties of
conducting. The density of the fluid is assumed to follow the fluid, i.e., the kinematic viscosity, the thermal diffusivity,

the Bounssinesq approximation, that is, the volume expansion coefficient, the electrical conductivity,
and the magnetic permeability.
p=pol1—B(T—T,)], The Rayleigh number is a function of time and can be
written as

wheref is the thermal expansion coefficient apglthe den-
sity at the reference temperatuflg . Other thermal and Rat)=R(1+ & coswt), (6)
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whereR is evaluated usingu,go. For the free-free surface the solution of these equations using the small parameter
boundaries under present consideration, we have the followperturbation method together with Floquet thefty].
ing simplified boundary conditions:

IV. MATHEMATICAL ANALYSIS

Jdu  dv
T=1, —= EZWZO on z=0 (7 In line with the linear stability theory, we analyze the field
disturbances in terms of an arbitrary set of normal modes and
on the lower plane and examine the stability of these modes. Following the proce-
dures given by Chandrasekhdr6], we need only examine
au v the behavior of the vertical component of the velocity field,
T=0, 9z oz W= 0 onz=1 ®  the temperature field, and the vertical component of the mag-

netic field. The horizontal components of the velocity and
on the upper plane. magnetic fields, when needed, may be derived from these
In the basic state, the fluid is at rest and thermal conducsolutions. Thus, we can consider the perturbations of these
tion prevails. The hydromagnetostatic solutions are as folvertical components and the temperature field as two-
lows: dimensional waves that take the forms

To(z,t)=1—2z, uy=0, Py(z,t), Hy=Kk. W=w(z,t)exdi(ax+ay)],

The governing equations for the stability analysis may be 0=0(z,t)exdi(ax+ayy)],
derived by considering a small perturbation to the conduc-
tion state of the system stated above, h,=H(z,t)exdi(ax+ayy)],

v=Ugtu, P=Py+p, T=Ty+6, H=Hy+h, whereW=k-u andh,=k-h. With these, Eqs(9)—(11) may
be further simplified, with the result
whereu, p, 6, andh are the disturbances of velocity, pres-

sure, temperature, and magnetic field. 5> oo o 10 5 o
With these, and takind X V X in Eq. (1) to remove the (b*-a%)| D*-a"~ g = w-HaPmD(D?~a*)H
gradient term, one has the equations for the perturbed field )
variables, =Rat)a“o®, (12
19 J 00
20 — 2 — o 2 — 2_,/2 +
v (Prat \% )u Ra(t)( aZV0+V ek) pr (D°—a%)0+w, (13
T HZPM--V2h (9) It 2.2
0z ’ E: PmD“—a“)H+Dw, (14
J — 2_.2 2
2 _v2|g=w, (10) whereD &/@z anda“=a, +a,”. .
ot The stability analyses require one to seek the solution of
eigenfunctions \{,®,H) and eigenvalues of Ra associated
19 5 1 du with the above equations for a modulated gravity field that is
Pmat = Pmaz’ (1D different from the constant gravity field by a small quantity

of ordere. These functions and Ra should be a functior of

where use has been used ¥ix VxXh=—-V?h, VxVxv and they should be obtained for a given magnetic field or Ha
=—-V2y, V-u=0, andV -h=0, and also the nonlinear terms and a frequency. Sincee is small for the problem under
have been neglected. consideration, we may seek to expand these eigenfunctions

The boundary condition for the perturbed velocity is theand eigenvalues in a seriesgin accordance with the theory
same as stated in Eqg) and(8). For the perturbed tempera- Of small parameter perturbati¢a7],
ture 6, it is zero at both the top and bottom as the tempera- )
ture is considered prescribed at these boundaries. The bound- R&t=R(1+e& coswt)=(Root eRo1+ & Ropt+ )

ary conditions required for the magnetic field for the problem X (14 coswt), (15)
under consideration are such that the field is continuous
across the interface between the vacuum and the fluid and W=Wygt eWqy+ 82Wpt -, (16)
that the induced current cannot flow out of the fluid layer, or,
specifically, the normal component of the induced current O=0,5te0,,+820 4, (17)
density is zero.

The above linearized equations, along with the boundary H=Hyg+ e Hyyt+ eZHipt - . (18)

conditions, constitute the governing equations for the stabil-
ity of thermal convection in a magnetic field with gravity = The above equations are substituted into EG8)—(14)
modulation. Stability analyses may now be made based oand the resulting equations are further cross differentiated to
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eliminate’H. Upon collecting the terms of the same powerstained by Chandrasekhi6]. For a fixed value of wave

of &, one obtains the set of differential equations

L(wyg) =0,
J0
&th:(Dz_k2)10+W101 (19
L(wyy)=—Rg@® ii—(DZ—aZ) W1o— Roa®
1 0@ 5o o 10— Ro
LT N | e T S
<[ 5070 || o 502
X Re{e 1104,
ot =(D?-a%) @3+ Wy, (20
o 10 2.2 2
L(wyp)=—Rpa Wnﬁ_(D —a%) |Wip— Rpia
1 9
X(ﬁ]ﬁ_(Dz_az) W11~ Ro18”
Jd 1 49
T N | T S
X\ g (P~ | g~ (P&
) J
XRe{e_'wt}(alo—Rooaz(ﬁ—(Dz—az)
X ii_(DZ_aZ) Re{e—iwt}®
Pm at 1
=(D?~a%)@ 5+ Wiy, (21)

ot

vectora, the eigenfunction is given by

Wgo=Sin 7z, (29

and the corresponding eigenvalueRy, is computed by

2+ a?

Ran=
00 a2

[(72+a%)%+ m?Ha?]. (25)
Note that with Ha=0 or in the absence of a magnetic field
the above expression reduces to that for a standarduile
problem.

To carry out the calculations for higher orders &gfwe
need to calculate the perturbed temperature field for the case
of e =0. The solution is obtained by simply substitutivwg,
back into Eq(19) and solving the resulting equation with the
boundary conditions fo® yy as stated in Eq.23), viz.,

sin(mz)
oo:%- (26)
With the eigenfunctionsvyy and O oy substituted into the
equation forw,;, one has an ordinary differential equation
with time periodic coefficients. The mathematical properties
and solvability conditions of these types of equation have
been extensively studied by Yakubovich & Starzhinkir]
and by Mishchenko and Roz¢%8]. For the equation to have
a solution, the theory states that the right hand side of Eq.
(20) for wq; must be orthogonal to the null space of the
operatorL. This requires that the time independémt steady
statg part of the right hand side of the equation be orthogo-
nal to its steady state solution or sig, whence by Eq(20)
Ro1 is zero,

_(sin wzm,sinwa B
1" (sinwz,sinmz) =0, @

where Re means the real value of the quantity in the curly

brackets and. is the differential operator defined by

3 19 19
— 2__ a2\ 2_,/2 - 2_ /2 -
L=(D"=an)| = (B =a) Il g 5~ (P a))(Pm&t
—(D?—a%) | —H&’D? |+ Ryga? ii—(Dz—az)
0% { Pmat '
(22

The above equations fov,; andHq; (i=0,1,2) are required
to satisfy the boundary conditions given by EG8.and(8),
which may be more specifically stated as folloM$]:

w;;=D?w;;=D%W,;;=0 and®,=0 atz=0,1,

i=0,1,2. (23

where the overbar denotes the time average over one cycle of
oscillation. The functior(t), which is the time dependent
part of Eq.(20), is zero as it involves the time averaging of
coswt or sinwt. Also, the following definition has been used
for the inner product:

1
(a(z),b(z))zfO a(z)-b(z)dz (28

By the same token, one can show that all the odd ordelRs of
that is, Ryp1,R03,Ros,-.., arealso zero because a change of
the sign ofe shifts the time origin by a half period but does
not change the physical problef8]. Thus for this type of
problem only an even order correction Roexists and the
lowest order of correction iRy,.
To calculateRy,, we need expressions far;; and © ;.

Equation(20) may be solved fomw,; and ®; by inverting

tions expressed by E@23) corresponds to the case with

=0 and describes the standardned convection in a mag-

and 0, should take the form of

netic field. Marginally stable solutions of the eigenfunction w;;=Re{Ae '“!}sin7z and ®,,=ReBe '“!}sinzz.

of wpo and eigenvaludRy, for that problem have been ob-

(29
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Thus, the following relation may be obtained: a2 iwPm = (7?+a% .
i . @11: ROO 2 2 L e_""t Sin T,
L(e "“'sinmz)=L(w)e '“'sinwz, (30) T +a (@) 33
wherelL (w) is defined by
Llw)— (PmH+Pr+1) w?(7?+a?%)? These results may be used along with E2p) to deter-
(w)= PmPr mineR,,, the lowest-order correction & Thus we have for
w
Fiw(m2+a2)[(1+Pri)(m2+a?)? 2
+(1-Pm Y 7?He — 0?PrPmt]. (31
_ 2 2 2\ i 2 2 2
Substituting Eqs(30) and (31) back into Eq.(20) and rear-  L(W12)= —a"Re(7°+a%)sinmz—a"Rgo 5 (D°-a )
ranging the final results, one has the solution for the eigen-
functionswq; and©® 1, as follows: 1 9 .
11 11 X ___(D2_a2) Re{e—lwt}ll_ (34)
a
W= Room
(—iw+m+ad)[iwPm = (m2+a?d)] By the solvability condition for Eq(34), the steady part
X Re{ L e"“t] of its right-hand side needs to be made orthogonal tergin
(@) or the steady state solution, whence we have the result for the
Xsinwz, (320  eigenvalue oRy;:
|
Roo= — ?Roo i—(Dz—az) 1 i—(Dz—az) Re{e '“1@,,sinmz (35)
027 (#Z+a?)\ | at Pm it 1 '
|
Carrying out the appropriate temporal and spatial operations, 2a8+ 37al= 7+ 7*He. (40)

one has the final solution fdR,,

2 5 . . This is the same as that for unmodulatechBe convection
_ Rgea (m°+a’)Pm—iw in a magnetic field16]. Thus, to the order of?, the critical
Roo= 5 R (36)

PmL(w) Rayleigh number is calculated by evaluatiRg, and Ry, at
. a=a.. In his studies on Beard convection with a modu-
~We can now determine the smallest wave number of th@ated temperature gradient, Venezigd] showed thag, is
disturbance that will amplify thermal convection in the fluid ,orq anda, needs to be considered only when a higher-order
layer when the Rayleigh number reaches a threshold valugynroximation, safRy,, is evaluated. It is straightforward to
From Egs.(25) and(36), the wave number is a function of ghow that this conclusion applies to the present problem as
the applied magnetic field. The minimum value of waveg||. |n passing, we note that with the absence of an applied
number at which the critical Rayleigh number exists can b‘?nagnetic field, Eq(40) givesa2= 7212, the same as for the
derived by taking the derivative & and setting it to zero, pure Baard problem, as exp?acted. However, unlike in the

pure Baard problem for whicla, is a constanta, becomes
dependent on the magnetic field applied when present. In
In addition, the wave number can also be expanded in powfact, ac—7**Ha"¥2"® and Rop—7’H&® when Ha-c,
ers ofe, or which implies that, as the applied magnetic field increases,
the wavelength of the plane disturbandgs., 27l/a;) at
ac=ag+ea,+ela,t- . (389  marginal stability becomes increasingly smaller and so does
the size of the cellular structure.

dRIda.= dRgol da.+ e2dRgpl da+---=0.  (37)

With these, one can show that to the leading ordgris
calculated by V. LIMITING BEHAVIOR OF  Ry,/Roo

ga.

Before embarking upon a discussion of the results, let us
examine some of the limiting behavior of the solutions. In
that regard, we are particularly interested in the ratio
which gives the following equation for determining the criti- Ry,/Ry,. From the solutions foRy, and Ry, the ratio de-
cal wave numbea,: pends on the exciting frequency and amplitudes, the mag-

0, (39
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netic field, and the thermophysical properties of the fluids. It is remarked that the above result should apply to the
monotonic stability branch as overstability may occur when
Pm—0 or llou<<k [18].
A. The case when Ha»0 On the other hand, for materials in which the magnetic
This case corresponds to f&rd convection driven by an field diffuses much faster than heat, Pre or llou>«
oscillating gravity field without the presence of a magnetic(most metal and semiconductor melts fall into this category
field. Gresho and Safib] studied the stability problem of a and have a value of Pm1x10° or Pm/Pr-1x10°), the
fluid layer with gravity modulation using the Gerlakin following relationship is obtained:
method and Hill’s theory. Our present solutions may be used
to make an assessment of the problem of a qualitative nature.Ro2 (m?+a?)?[(m*+a®)*+Ham?]Pr
This can be done by setting the Hartmann number to zero in Ry, 2{w?(72+a%)2+[(72+a%)2(Pr+ 1)+ H&m2]2}
Egs. (25) and(35), which gives the result

as Pm-oo.
Roz (m?+a?)?Pr
Ry 2[(m2+a?)2(Pr+1)%+ w?]"

(42) For both casesRy, is always positive and thus an applied

magnetic field increases the critical Rayleigh number,
thereby inhibiting thermal convection. Indeed, becaRgsgs
This equation suggests thR}), is always positive and the positive, an applied magnetic field becomes even more effec-
fluid becomes more stable with a modulated gravity fieldtive in damping out disturbance in a fluid subjective to a
than with an unmodulated one. The stability of the fluid layermodulated gravity field than one subject to a constant gravity
depends on the Prandtl number of the liquid, the excitatiorfield. Both relations reduce to E§41) when Ha-0, as is
frequency, and the other parameters associated Rith expected. For a fixed magnetic field, the effect of the fre-
The maximum stabilizing effect occurs at=0. This con- quency on the stability of the fluid layer differs for the two
clusion is consistent with Venezian's res{] on thermal cases. The difference, however, diminishesascreases. In
convection with an oscillating wall boundary condition. For fact, both relations show th&g,/Rog~ w2 asw— = for a
both the present case and Venezian's problBg/Ry, ap-  fixed Ha. However, the stability behavior with an increase in
proaches an asymptotic valfiee., 0.5 Pr/( Pr)?] at a rate  the applied magnetic field differs for these two limiting situ-
of w? asw— 0 when the wall temperatures are oscillated outations. In the case of PmO0, the ratioR,,/Ryo approaches a
of phase, while the stabilizing effect diminishes to zero at aconstant as Ha e, suggesting that for these types of mate-
rate of w2 asw—o0. This behavior is also consistent with rial Ry, increases at a rate of Hai.e., the same aRqy,. For
the analyses of Wadih and Ro(i2], who studied thermal the case of Pm», on the other handRy,/Roo~Ha 23, or
convection in an infinitely long cylinder with gravity modu- Ry, increases at rate of #3 as Ha-. This is in sharp
lation along the axis of the cylinder. In fact, with thé®f,  contrast with the conclusion drawn from a stability study of
substituted for {2+ a?)?, the above equation becomes iden-fluid subject to a constant gravity in a magnetic field, which
tical to the expression for the ratio ®,,/Rq, for an infi-  states that marginal stability is independent of the parameter
nitely long cylinder with a vertical gravity modulatidisee ~ Pm[16].
Eq. (8.11) in [9]]. Equation(41), together with the results It should be remarked here that the above discussion for
obtained by other investigatof8,6,9), seems to suggest that the case of Pm:- is conditional on Ha/Per 1. However,
the near order correction to the critical Rayleigh number is aletailed analysis shows that the conclusion holds true so long
constant atw=0, and the constant is given bR, as Ha<0.5Pm/Py¥2 Thus, for typical electrically conduct-
=277*8 Pr(1+ Pr 1)?, which is a function of Prandtl num- ing melt experiments under consideration for space applica-
ber and is independent of the type of geometry and th&ions, Ha is in general less than 1000 while &(Bm/Pj*?
mechanism of periodic excitatigmwhether bottom wall tem- ~5X 10’. Clearly the condition is well satisfied.
perature or antisymmetric wall temperature or gravity modu- The analyses further show that, if H&.57(Pm/Py>?,
lation). An exception to this is when both the top and bottomRg,~ — Ha? as (Ha,Pm}->~ and thus an applied magnetic
wall temperatures are modulated in phase, for which castield becomes less effective in stabilizing the fluid in a
Rp,=0 atw=0 (see also case in Fig. 3 below. modulated than in a constant gravity field. Moreovegy,~
—H&?/(Pm—1) as Ha- for a finite value of Pm(#1).

B. The case when Pr0 or Pm— e VI. RESULTS AND DISCUSSION

The parameter Pm is a measure of the ratio of diffusion of ) ] )
magnetic field over diffusion of heat in a medium. For ma- S0me numerical results are provided below to further il-

terials that transport heat much faster than magnetic fieldustrate the onset of thermal convection with oscillating
Pm—0 and thus we have the relationship gravity and the effects of applied magnetic fields. Figure 2
plots the results foRy,/Ryg againstw for free convection by

Ro2 (w?+Ha&m?Pn[ (w2 +a?)%2+Ham?]Pr oscillating gravity forces without an applied magnetic field,
R_oo—> 2[w2(m2+a2)2(Pr+ 1)2+ (w2 + H&m2P1) |2 along with the results by Venezi48] for convection by wall
temperatures modulated out of phdsee Eq.(45) in his
as Pm-0. papet for four values of Pr, namely, Pr0.01, 0.1, 1, and 10.
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. . . FIG. 3. Comparison oRy,/Ry, for gravity modulation and three
FIG. 2. Comparison oRy,/ Ry for gravity modulation and wall  yigte ot \yay temperature modulations for=,9.01 without an ap-

temperature modulation in the absence of an external magnen&ied magnetic field
field. '

to 100 and a Hartmann number of 1000 is considered an
It is apparent that the results for the two different mOdUIa'upper limit. For examp|e, for a Ga_doped germanium Sing|e
tions match exactly at the limib=0 for all values of Pr, as crystal growth system of 1 cm in dimension, +2000
expected. With an increase i, the ratio ofRg2/Rgo de-  would correspond to a magnetic field of 2.2[I5]. The
creases for both gravity and wall temperature modulationsresults in Fig. 4 clearly indicate that an applied magnetic
However,Ro,/Ro decreases much faster with wall tempera-field helps to stabilize the thermal convection subject to
ture modulation than with gravity modulation for the entire gravity modulations. In fact, the fluid becomes more stable
range of Pr. The same behavior was also reported by Wadi'gs the magnetic field strengthr the Hartmann number Ha
and Roux[9] for an infinitely long cylinder with gravity increases. This behavior is further exhibited in Fig. 5, where

modulation along the axis of symmetry. Ro2/Roo is plotted against Ha withw as an additional
Inspection of Fig. 2 also indicates that as Pr decreases thearameter.

difference for the onset of convection between the wall tem-
perature modulation and gravity modulation becomes 14
smaller. In particular, at Pr0.01, the two curves for differ- Pr=0.01, Pm=10°
ent modulations almost overlap. To better resolve the differ-
ence, the present results are plotted in Fig. 3 along with thos¢
obtained for three different wall temperature oscillating
mechanisms, where casasandb correspond to symmetric
and antisymmetric wall temperature modulations, respec-
tively, and case is for the bottom wall temperature modu-
lation only. Clearly, casa is much different; but casésand o
c are very closely correlated to the present results, with ax 006 1. _
maximum difference 0&k2% for a frequency of less than 10. T
Perhaps one of the important implications of these results is  0.04 T~
that a ground-based experimental system that employs wal T
temperature modulations, either symmetric or antisymmetric, .02 |
may be designed to simulate reasonably well the effects of
gravity modulations, for the purpose of studying the onset o |7 = — —
of thermal convection of a heated fluid layer with these
modulations.
The magnetic field effects on the thermal convection are 0 20 40 60 80 100
depicted in Fig. 4 for liquids with Rr0.01, which covers
most electrically conducting fluids. For a majority of micro-
gravity experiment systems considered for metal and semi- FIG. 4. Dependency dRy,/Ry, on frequency ofy-jitter modu-
conductor melts, the Hartmann number is in the range of 5tion in the presence of an applied magnetic field foeB101.

0.12

Ha = 1000
0.10 —— Ha = 100

0.08 | ——— Ha=0
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012 ] The linear analyses presented in the previous sections for a
et single component can be adapted to study these types of
= -/'/// multifrequency component modulation. In particular, Egs.
0.10 o // (19—(23) will be used to describe each individual compo-
/»/ ye nent with distinct frequency and amplitude. Now, similar
Vv procedures may be extended to solve for multiple frequency
0.08 Yyavd g-jitter problems. Following the same line of argument as
° Y ave stated beforeR andW are expanded in terms &,
il i
Su i ; ——— =l
e A oo R=Ro+E" R+ E2"- Ryt~ (44)
I s
' e W=Wo+ET Wyt E2T- Wyt - 45
004 // =Wo+E"-Wq; “Woot--, (45
;
| // whereE?, Ro;, Wo;, Rgp, andWo, are also vectors and are
1y Pr=0.01 fin
0.02 // / Pme10® defined by
: / E2={8181,8182,8183,...,8i8]‘,...}T,
0.00 T T T T
0 200 400 600 800 1000 Roi={Ra, R, RS, T,
Ha

FIG. 5. Dependency oRy,/Ryo on the strength of an applied Wiog={Woy, Wy, Wy, - 1,
magnetic field for P+0.01. - {Ré%,R(l)g, R(l)g, N ,Ri)jz. B .}T’
VIl. EXTENSION TO MULTIFREQUENCY MODULATION N
| : L L o Woo={ W55, W53, W53, ... Wi,,.. }T.
n space vehicles, gravity in tandem with microgravity is
random and is caused by various sources including crew @ and?{ can be expanded in a similar fashion. Substitut-
movement and on-board machine operations. In many casgq these relations into Eq$12)—(14) and separating the
a single component is not sufficient to present the gravitysame order terms as was done before for the single frequency

perturbation and thesgjitter data may be represented by a case, we have a system of differential equations, similar to
synthesized Fourier series, each term of which involves gqs (19—(23), for the expanded variables.

time harmonic function with a distinct frequency, This set of equations can be solved in a fashion parallel to
M the system defined by Eq&l9)—(23). In particular, we note
t)= 1+ cosw.t | = 1+ET cosmt), thatRy,, and similarly other odd term corrections, vanish by
91)= 4000 m2:1 Fm = ES0m ool ) the same reasoning based on the solvability condition for Eq.

(42 (20). Thus, the first-order functions such ¥s; can be de-
termined and should have expressions similar to those in Eq.
(29). With these results and also the solvability requirement
that the steady part of the right hand side of E4R) be
orthogonal towW,,Rg, can be determined. Writing the solu-

whereE and coswt are two vectors,

E={sy,85,85,.... and coswt

={cosw;t,Ccosw,t,Coswst,...} . (43)  tion in component form, we have f&p)',
|
Roo d 1 9 .
mn_ __ - R 2_ 42 - 2_ 472 —iopt n :
Ro> (7T2+a2)< p (D°—a )>(Pmat (D—a%) | R{e }@11,Sln77>, (46)
|
where R3.a° 2+ a?)Pm—i
. i e[(w ) w”] for m=n
on _p & o fienPmi(m?ra?l) | R={ 2 PML(wy)
117 R0, 252 L(wp) € sinmz. 0 for m#n,
(47) (48)

In particular if ,=nw, wheren is an integer ana is the
reference frequency, the cross product terms disappear amhich obviously is very similar to that obtained for a single

we have a simplified equation f&J, ', frequencyg-jitter component.
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VIll. CONCLUDING REMARKS induced thermal convection can be suppressed by applying

This paper has presented a stability studv of modulated®” external magnetic field. In fact, the magnetic field is more
1S pap P ) y Study .~ ~effective in stabilizing fluids subject to a modulated gravity
gravity-induced thermal convection subject to an applie

maanetic field. The analvsis is based on solution of the Iin_ield than fluids subject to a constant one. The correction
9 i y term Ry, increases at a rate of Fifor Pm<1, but at a rate of

earized magnetohydrodynamic equations using the small pa;_s3 ; o e
rameter perturbation technique. The nearest correction to t%% 5;%;7;;2'nvjﬁﬁéisiénsztgﬁggIzteﬁlgg?\gtégslﬂ]gnHSX-
critical Rayleigh number above which thermal convection eri.ments und;er consideration Ig/or the pcase of Ha
sets in was obtained for both single and multiple frequenc;&o 5m(Pm/PY2 R decreasesat. a rate of M for Pm
modulations. The nearest correction teRg} is found to be a IOV T 02 T . . L
function of both applied magnetic field and gravity modula—>1’ indicating that an increase in applied magnetic field

tion frequency. The term asymptotically approaches a Congren_gth may desta_bil_ize_ the fluids when su_bjected to an os-
stant at a rate ob? for <1, while it goes to zero at a rate cillating gravity. This is in sharp contrast with our existing

of © 2 for w>1. This holds true with or without the pres- knowledge that the marginal stability of a magnetic field

ence of a magnetic field. The heated fluid layer is more"’mtlng on fluids subjected to constant gravity always in-

stable with gravity modulation than with wall temperature creases with Habut is independent of Pm.
modulations. The difference, however, becomes smaller with
decreasing Prandtl number. For metals and semiconductor
melts (P=0.01), the difference becomes reasonably small
so that the modulated gravity effects on flow instability may The author gratefully acknowledges the support of this
be simulated with appropriately designed wall temperaturevork by NASA Microgravity Science and Applications Di-
modulations. For conducting melts, modulated-gravity-vision (Grant Nos. NAG8-92 and NAG8-1693
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